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SUMMARY

In this part, a new hybrid numerical model for solving the two-dimensional axisymmetric Navier–Stokes
equations for a multi-species reacting gas out of thermal and chemical equilibrium is constructed. The
formulation is based on a mixed finite volume/finite element formulation for unstructured meshes. The
convective flux is treated with an approximate Osher–Riemann solver, and the other fluxes are treated
using P1 finite elements. New aspects of the extension of the Osher–Riemann solver are presented here.
This scheme was used for the benchmark model comparison in Part I, and is applied here to hypersonic
(Mach 25) flow past a two-dimensional ellipse and a hemispherically blunted body at sea level. Copyright
© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decade, several methods have been proposed for solving two-dimensional reacting
flows for combustion and hypervelocity problems [1–3] using finite difference formulations
[4,5], finite volume schemes [6–9], or streamline upwind Petrov–Galerkin (SUPG) finite
element methods [10]. Combustion flows are mostly subsonic or transonic, and assume thermal
equilibrium. In the present work, focus is on the computation of high speed flows out of
chemical and thermal equilibrium, for which the model system of partial differential equations
(PDEs) is hyperbolic with a highly non-linear right-hand-side source term.

The method proposed in the present work is an extension of a hybrid finite volume/P1 finite
element formulation introduced by Angrand and Dervieux [11,12] for perfect inviscid gases.
The new formulation presented here includes three main aspects. Firstly, it extends the finite
volume/finite element method to axisymmetric reacting flows. Secondly, the convective flux is
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treated with an upwind cell-centered scheme using a finite volume approach based on the
scheme of Osher extended to non-equilibrium flows. In particular, the treatment of the
intermediate states requires fewer assumptions than the work of Abgrall [13]. The other terms
are treated using a finite element approximation. Thirdly, the convective and viscous fluxes are
linearized within a time step to allow faster convergence.

2. PROBLEM FORMULATION

Part I described the equations governing a reacting gas out of thermal and chemical
equilibrium. In this part, the case of a five-species gas is first considered, and then it is assumed
that the vibrational energies of the molecular species are described by the same vibrational
temperature. Therefore, only one vibrational energy equation is needed. For an axisymmetric
problem, the vector momentum equation gives an axial and a radial equation. Thus, nine
coupled PDEs are obtained, which may be written in vector form as

(W
(t

+9 ·(F(W)+V(W))=Vc(W) (1)

where W is the vector of conservative variables, F and V are the convective and viscous fluxes
respectively, and Vc is the source term due to chemical and thermal non-equilibrium. Hence,
we write

W= (ri, ru, E, E61)T (2)

with 15 i5ns, where ns is the total number of chemical species of the gas, ri is the density of
species i, u is the mean average velocity, E is the total energy, and E61 is the vibrational energy
of the species whose vibrational energy is ‘tracked’. Note that (1) does not distinguish formally
between a two-dimensional and an axisymmetric two-dimensional problem. For computational
convenience, the axisymmetric equation can be expressed in the form

(W
(t

+90 ·(F(W)+V(W))+
1
r

H(W)=Vc(W) (3)

where 90 · is the divergence operator for a two-dimensional problem, and r is the radial
co-ordinate.

Setting

(F(W)+V(W)) ·90 r−H(W)=S(W) (4)

Equation (3) becomes

r
(W
(t

+90 ·((F(W)+V(W))r)=rVc(W)+S(W) (5)
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In the following, the ‘tilde’ will be dropped and 9 will be used to indicate the two-dimensional
operator.

The solution is now sought in the two-dimensional r–z section V of the three-dimensional
domain D. For axisymmetric flows, the r and z components of F and V are
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Here

VEr=trrur+trzuz+qr+%
i

rihiwir (7)
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i
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and

VE6 1
= (VE6 1r, VE6 1z)T=q6+E61w1 (9)

The source term due to non-equilibrium effects is V(W)= (Vci, 0, 0, 0, V6)T and the axisymmet-
ric source term is H(W)= − (riwir, Hr, Hz, HE, HE6)T with
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HE6= −E61ur+q6r+E61w1r (13)

and

tuu=
2
3

m
�

−9 ·u+2
ur

r
�

(14)

The source term is S(W)= (0, . . . , 0, Sr, Sz, SE, 0)T with
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In Equations (6)–(17), the physical and chemical models defined in Part I apply.
A weak integral formulation of (5) can be constructed on a discretization of elements in the

usual way. We then have the following discrete form for the axisymmetric problem:

Find wh�Gh(V), such that

&
V

(wh

(t
8ir dV+

&
Ci

9 ·(rF(wh)) dV−
&

V
98i ·V(wh)r dV

=
&

V
Vc(wh)8ir dV−

&
(V

rV(wh)8i ·n dG+
&

V
S(wh)8i dV (18)

for admissible test functions 8i with compact support on patch Ci centered at node i. The
convective flux treatment in the second integral is carried out following the approach in the
next section. Further details are given in Reference [14].

3. OSHER APPROXIMATE RIEMANN SOLVER

3.1. Flux function

The convective flux term in (18) is first rewritten as a boundary integral,

&
Ci

9 ·(rF(wh)) dV=
&
(Ci

F(wh) ·nr dl= %
j�ki

&
Sij

F(wh) ·nr dl (19)

where ki is the set of element neighbors of node i, (Sij is the bi-segment joining the midpoint
of segment ij to the centroids of the triangles for which the segment ij is a side and n is the
normal to the segment (Figure 1).

The flux function defined by the relation

Fij(wL, wR)=
&

Sij

F(wh) ·nr dl (20)

may be computed using approximate Riemann solvers [15,16] or flux vector splitting schemes
[17,18]. These techniques were originally developed to solve the Euler equations for a perfect
gas, and have been extended here to non-equilibrium reacting gas problems. More specifically,
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Figure 1. Dual mesh: triangulation and finite volume cell Ci.

the numerical flux function in (20) is approximated by an extension of Osher’s upwind scheme,
following the approach by Abgrall [13] for non-equilibrium reacting flows, and is further
modified for the axisymmetric problem. We remark that this approximate Riemann solver
involves more complex calculations to evaluate the dissipation terms of the flux function than
the approximate Riemann solver of Roe [16]. However, it does not require an ‘entropy
correction’ [19], and is more robust for non-linear waves.

It is difficult to derive the Osher flux function rigorously for the reacting gas problem and
some simplifications are required in the evaluation of the Jacobian matrix and the Riemann
invariants; e.g. the matrix is derived assuming that all components of the variable vector w are
independent. This is not strictly true since, in the case of chemical equilibrium, the densities of
species are coupled by the equilibrium constants of the chemical reactions. Thus, it is not
possible to argue that the density of a given species is independent of the other densities, and
the overall energy of the gas. Other examples of constraints on the densities occur because of
atom and charge conservation. The ratio of nitrogen atoms to oxygen atoms is fixed at the
value in standard air (79:21), and the plasma is assumed to be neutral.

3.2. Riemann in6ariants and intermediate states

General definitions of the Osher–Riemann solver invariants and intermediate states are given
in Reference [15]. The Riemann invariants are determined from the eigenvalues of the Jacobian
A of the convective flux F(wh) ·	(Sij

nr dl, and the right eigenvectors associated with each
eigenvalue. The eigenvalues of A are û, û+a and û−a, where the pseudo-velocity is defined
by

û=u ·
&
(Sij

nr dl=u ·n (21)
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and the pseudo-speed of sound is defined by

a2=gso

p
r

, gso=
%
i

ri

Rg

Mi

%i ric6i

(22)

The Riemann invariants for û9a are

ri

r
=constant,

E61
r

=constant and û=constant (23)

û�
2a

gso−1
=constant and

p
rgso

=constant (24)

For u ·n, we get the invariants

û=constant and p=constant (25)

The intermediate points and sonic points, when they exist, are determined using the
Riemann invariants. Furthermore, the eigenvalues at the sonic points are equal to zero. In this
work, we choose to order the eigenvalues as follows: û+a, û, û−a ; this order is important for
the calculation of the Osher flux [15]. Expressions for the intermediate states and sonic points
are given in Reference [14]. In the previous derivations of the approximate Riemann invariants,
the intermediate states and sonic points, the only necessary assumption is that gso is constant
through a compression or a rarefaction wave. Abgrall et al. [13] derived the Riemann
invariants and intermediate states for one-dimensional non-equilibrium flows. They added for
the û9a waves, another Riemann invariant equal to p/rge, where ge is assumed constant and
defined in their work.

4. BOUNDARY CONDITIONS

At the axis of symmetry we set u ·n=0. The walls may be fully catalytic or non-catalytic, at
constant temperature or adiabatic. The velocity at the walls is set to zero; the normal gradient
of the vibrational temperature is taken to be zero, as discussed by Park [20]. For far-field
boundary conditions, where we have specified incoming profiles or exit free conditions, Fezoui
and Stoufflet [12] suggested the use of a Steger and Warming splitting approximation, which
implies

&
(CiS(V

F ·nr dl=A+(Wi)Wi+A−(Wi)W� (26)

where A+ and A− are defined from the Jacobian matrix A of
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Fi�=F(W) ·
&
(CiS(V

nr dl (27)

Matrices A+ and A− have the same eigenvectors as A; the eigenvalues of A+ are the
positive eigenvalues of A, the eigenvalues of A− are the negative eigenvalues of A. Further-
more, they satisfy the equality A=A+ +A−. The matrices A+ and A− need not be computed
explicitly because of the following identity:

Aw=l1w+ %
i\1

(li−l1)(li ·w)ri (28)

where li are eigenvalues of A, and li, ri are, respectively, the left and right eigenvectors
associated with li. A+ and A− satisfy the same equation, replacing the eigenvalues accord-
ingly. Hence, Equation (28) may be used to determine the matrices A+ and A− by replacing
w successively by the vectors of the canonical basis.

5. SOLUTION ALGORITHM

A time-dependent formulation of the problem has been developed. This implies that both
unsteady and steady solutions can be computed. For the steady state problem it is not
necessary to obtain an accurate time-dependent solution, and large time steps are desirable.
However, since the chemical characteristic time is several orders of magnitude smaller than the
acoustic relaxation time, the chemical source terms are treated using a semi-implicit approach.
We approximate the unsteady term by a first-order discretization in time, and use mass
lumping to rewrite the unsteady, axisymmetric and non-equilibrium source terms in Equations
(19) and (20).

�
I−Dt

(Vc

(W
� DWi

Dt
ri
&

Ci

dA= (Vc(Wi)ri+S(Wi))
&

Ci

dA− %
j�k(i)

8Fij−
&

V
rV(Wh) ·98i dA

+
&
(V

rV(Wh)8i ·n dG (29)

or more compactly,

MDW=B (30)

where M is a block diagonal matrix, DW is a vector with components DWi, and the
components of B correspond to the right-hand-side of Equation (29). The convective flux, 8Fij,
computed in the explicit scheme by the Osher upwind scheme defined above, may also be
approximated by the Steger and Warming flux function,

8Fij(U, V)=Aij
+(U)U+Aij

−(V)V (31)
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where Aij is defined by Fij(U)=Aij(U)U and Aij=Aij
+ +Aij

−, where the eigenvalues of Aij
+ are

the positive eigenvalues of Aij, and the eigenvalues of Aij
− are the negative eigenvalues of Aij.

This allows us to compute an approximate Jacobian of 8Fjj,

(8Fij(U, V)(dU, dV)=Aij
+(U)dU+Aij

−(V)dV (32)

Now the problem reduces to solving the matrix system M%DW=B, where M%=M+M¦, is no
longer block-diagonal. This system is solved using a block Jacobi algorithm.

Remark
Even though it is possible to derive the Jacobian matrix Aij analytically, assuming that the
components of the vector of conservative variables W are linearly independent, analytic
expressions Aij

+ and Aij
− are not obvious. Since the eigenvalues and eigenvectors of Aij are

known, we may obtain the matrices Aij
+ and Aij

− using Equation (28). The viscous flux is
linearized using an analytically derived approximate Jacobian operator. When deriving the
viscous Jacobian we neglect the variations of transport properties (viscosity, thermal and
vibrational conductivities).

6. HYPERSONIC FLOW PAST A TWO-DIMENSIONAL SEMI-ELLIPSE

The goal of this test problem is to compare inviscid perfect gas calculations with inviscid
reacting gas calculations for a two-dimensional hypersonic flow past a profile with an elliptic
nose at an angle of incidence of 30°. The reacting gas is assumed to be out of chemical
equilibrium, but in thermal equilibrium. This test problem was proposed in Reference [21].

The semi-ellipse is defined by the equation (x/0.06)2+ (y/0.015)2=1. The mesh is generated
by mapping from a structured grid (90×30) and is slightly graded near the nose of the ellipse.
The incoming flow at angle of incidence is specified by the following characteristics M�=25,
T�=205.3 K and p�=2.52 Pa. The pressure and temperature correspond to standard atmo-
spheric conditions at an altitude 75 km. For perfect gas calculations, we assume that the mole
fractions of N2 and O2 are in the ratio 79:21. For reacting gas calculations, we consider a
five-species gas composed of N2, O2, NO, N and O. The corresponding set of chemical
reactions is given in Appendix A of Part I. The initial data are taken as the approximate
solution for flow at zero angle of incidence. Incremental continuation in incidence angle is used
to finally reach the 30° incidence condition in 50 steps. This approach avoids stability
problems due to negative numerical pressure values, which arise in the first steps of the
calculations if the 30° incidence is enforced immediately.

We ran a validation test case on the simpler problem of a flow over a circular cylinder of
radius 0.05, at Mach 10 with no angle of incidence. The same incoming flow characteristics as
the one mentioned above were used. For such a case, the shock stand-off distance d is known
by the empirical formula d/R=0.386 exp(4.67/M�

2 )=0.4044, where R is the radius of the
cylinder and M� is the incoming Mach number. Also, the maximum stagnation temperature
is determined by T/T�=1+ (g−1)/2M�

2 , so T=2258.3 K, where T� is the incoming flow
temperature. The 50×100 mesh is structured. The maximum temperature computed is 2162 K.
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Applying a first level of refinement with an error indicator based on the pressure gradient, the
new maximum temperature behind the shock is 2217 K, which is within 2% of the exact value
of the maximum temperature. The shock distance ratio d/R is equal to 0.398.

Figure 2 compares the temperature profile on the symmetry line of the ellipse obtained for
two meshes: a coarse grid and a refined mesh adapted from the coarse mesh with an error
indicator based on the pressure gradient. We note that in this problem, due to the angle of
incidence, the symmetry line is different from the stagnation line. The shock stand-off distance
of 3.27 mm, obtained in this calculation with a refined mesh, shows 10% improvement on 3.6
mm obtained on the coarse structured grid. This shows clearly that the shock stand-off
distance depends on the shock resolution and grid resolution.

This difference of prediction between computations on a crude grid, and on an adapted grid
raises a conceptual issue: rather than seeking a uniformally small error in the flow domain, we
may seek a small error in the domain of interest to, say, the designer. In this example, we are
interested in the accuracy of the solution around the axis of symmetry where the temperatures
are the largest, and do not need a great accuracy for the shock resolution in other regions.
Smeared shocks, singularities, far-field approximations can be inaccurate provided that they do
not pollute the approximation in the domain of interest [22].

A calculation was performed assuming that the gas is in thermal equilibrium. The maximum
temperature behind the shock is T=18900 K. The chemistry at this temperature is endoergic,
because the principal reactions result in dissociation of the molecular species. Therefore, as
expected, the maximum computed temperature is lower than that predicted for an inert gas.

Ionization is significant at the conditions of the test problem. Figures 3 and 4 show results
for a reacting and ionizing flow past the ellipse for a five-species and a nine-species gas,
respectively at thermal equilibrium. Iterations for both five-species and nine-species calcula-
tions were terminated at a residual less than 10−3. The temperature contours in Figures 3 and

Figure 2. Translational temperature comparison for coarse and refined meshes on the symmetry line for
a perfect gas M=25 flow over an ellipse.
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Figure 3. Isotherms for a five-species thermally equilibrated chemically reacting flow past a two-dimen-
sional semi-ellipse.

4 show that at a given location behind the shock, the translational temperature for the
nine-species model is less than that for the five-species model. This difference may be explained
by the fact that highly endoergic ionization reactions are included in the nine-species model,
which tend to lower the gas temperature.

7. HYPERVELOCITY FLOW PAST A HEMISPHERICALLY TIPPED BODY AT SEA
LEVEL

This series of problems presents results and analyses of non-equilibrium calculations of a
reacting air flow around a hemispherically tipped body with nose radius R=1–100 mm. The
velocity 6� of the incoming flow varies from 2 to 10 km s−1. The conditions for pressure and
temperature are those at an altitude z.

The purpose of this analysis is to determine a domain in the three-dimensional space
(R, 6�, z) for which the flow field in the shock layer may be defined by two properties.

We note that this domain has equivalent domains when we replace any of the radius,
velocity or altitude by the Reynolds number based on the radius R : Re=6�R/n(z).

We consider two cases for which the knowledge of two physical properties is sufficient to
characterize the gas locally. The first occurs when the gas is locally in thermal and chemical

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 691–709
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Figure 4. Isotherms for a nine-species reacting air calculation.

equilibrium; then the composition of the flow is obtained knowing the equilibrium constants
of the chemical reactions. In a second case, the gas is frozen at the composition of ambient air
for temperatures less than 1000 K: the mass fractions of species NO, N and O are negligible
compared with the mass fractions of N2 and O2. The knowledge of pressure and enthalpy, for
instance, is then sufficient to obtain any other local properties of the gas.

These domains will guide design engineers who need to study the high speed flow patterns
around a blunt nosed body. For a specified radius, velocity and altitude, we can determine
what type of model and simulator will suffice to provide a satisfactory computation of the flow
field, depending on which part of the domain this set belongs to.

Such considerations are important for design purposes, since for a suitable problem, a
perfect gas code will provide a solution much faster than a full non-equilibrium flow code.

7.1. Calculations at sea le6el

Here we consider non-equilibrium viscous flow past a sphere at sea level. For this test case, the
non-equilibrium source term is important since the density at sea level is high: 1.14 kg m−3

compared with 4.674×10−5 kg m−3 at an altitude of 75 km. The problem is two-dimensional
axisymmetric. The sphere has a radius of 1 mm. The solution presented in this paper is
computed on a crude mesh (1701 nodes), graded towards the stagnation point. The first node

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 691–709
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on the stagnation line is at a distance 10−6 m from the sphere. The characteristics of the
incoming flow are 6�=2 km s−1, p�=1 atm, T�=298 K. The wall is adiabatic and non-
catalytic, the incoming air flow is considered inert, and the vibrational temperature of the gas
is taken as Tv=298 K. Since the maximum temperature behind a normal shock, at M�=5.68,
is 2150 K for a perfect gas, only a five-species gas calculation is performed: the ionization
reactions are negligible at temperatures less than 2500 K in air. The composition of the
free-stream flow is the equilibrium composition at T=1000 K, since the composition of the
chemical reactions is forced to be constant at temperatures lower than 1000 K.

Figure 5 shows the translational temperature contours. Figure 6 shows a clear difference
between the translational and vibrational temperatures along the stagnation line, which
indicates that the flow is out of thermal and chemical equilibrium. This observation was
confirmed with several calculations on more refined grids. At the conditions of the flow behind
the shock (Tmax=2200 K, pmax=42 kPa), the vibrational relaxation time tv,N2N2

=O(10−5) s,
whereas the flow characteristic time at the middle of the shock layer tflow is of the order of
10−6 s. This explains why the flow is out of thermal equilibrium in the shock layer at the
conditions of this test case.

The density contours of NO around the hemispherically blunt body are given in Figure 7 for
inviscid calculations. The density increases as the temperature increases behind the shock. The
flow is out of chemical equilibrium: at T=2000 K, the equilibrium density of NO is
approximately 10−3, whereas in the current calculations, the density of NO reaches a

Figure 5. Translation temperature isolines.
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Figure 6. Stagnation line temperature comparison.

maximum value of the order of 10−6. This is due to the fact that the set of chemical reactions
N+O2�NO+O and N+NO�O+N2 are predominant and are not equilibrated. NO is
depleted to produce O atoms and N2.

7.1.1. Influence of the physical model. Figure 6 also compares the temperature along the
stagnation line for two inviscid flow calculations: (i) full non-equilibrium, and (ii) thermal
equilibrium (Tv=T) but chemical non-equilibrium. In case (ii), the rate coefficients depend

Figure 7. Log10(NO) density contours.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 691–709
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only on the translational temperature. Both calculations are converged to a residual of 10−3.
These calculations required more than 3000 iterations at a Courant–Friedrich–Lewy (CFL)
number of 0.1. The non-equilibrium calculation is performed using the thermal equilibrium
calculation as a ‘warm start’. The maximum temperature for the non-equilibrium calculation
is 2200 K versus 2000 K for the thermal equilibrium calculation. The translational temperature
is lower in the case of thermal equilibrium since the vibrational energy is higher than that for
a non-equilibrium calculation.

It is emphasized that the vibrational–translational (V–T) relaxation time model used in
these calculations follows the Millikan and White curve-fit formulae. The model of Thivet et
al. [23] significantly modifies the vibrational temperature since it gives a shorter V–T
relaxation time than the Millikan and White model. This will affect the nature of the flow in
the shock layer since a shorter relaxation time will lead to thermal equilibrium faster.
However, in the absence of experimental data, it is not clear which model is preferable.

7.1.2. Influence of the grid. The effect of the grid on two main features of the flow was
investigated in this calculation. First, the nature of the flow in the shock layer was examined.
It was observed that the shock stand-off distance was insensitive to the grid as well as to the
nature of the flow in the shock layer. Second, to obtain accurate gradients at the wall and near
the stagnation line, calculations required a very fine grid. Several parameters were studied,
including the effect of cell aspect ratios at the wall, the distance of the first node away from
the wall, and the number of nodes in a boundary layer. We observed that the choice of a first
cell at the stagnation line with a ratio dy/R=O(10−5), where R is the radius of the body at
the nose, gave gradients independent of the cell width in the radial direction, dy. Owing to the
first-order accuracy of the numerical scheme, the aspect ratio of the cell was kept less than
dy/dr=5. The explicit scheme failed to converge for a CFL number larger than 0.1 when the
aspect ratio exceeded 20. The first ten points away from the wall were positioned to be
equidistant along the stagnation line.

7.1.3. Parametric study. In this section, we present results of calculations for varying radii,
R=1–100 mm, at incoming flow velocities 6�=2–10 km s−1. The wall conditions are similar
to those discussed in the particular test case presented above. The physical model chosen
corresponds to the model used in the previous calculation. In order to perform viscous
calculations predicting wall gradients, the mesh is structured with 100×60 nodes.

The shock distance as a function of incoming velocity, computed using the formulae of
Reference [24] is compared in Figure 8 with the present solution. Differences of up to 30% are
observed. This discrepancy is largely due to the fact that Reference [24] assumes a calorifically
perfect gas (which is clearly not the case here). It is also observed that the results obtained fit
the relation

d

R
=

2
3

rb

r�
(33)

with d the stand-off distance, R the radius at the nose, and rb the density behind the shock.
As a reference, note that the work of Wen and Hornung [25] presents a correlation between

the shock stand-off distance around a sphere with the free-stream kinetic energy and a reaction
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Figure 8. Shock stand-off distance × for R=1 mm, at sea level conditions compared with Reference
[24].

rate parameter. This work was validated and studied for incoming flow pressures and
temperatures, different by orders of magnitude from the pressure and temperature conditions
of the current study.

For each calculation performed, a sub-layer was observed in the shock layer in which the
translational and vibrational temperatures are equal. This remark validates simplifying as-
sumptions of the flow physics in the shock layer, used for instance in the work of Wen and
Hornung [25] to derive analytical closed form relations. This layer is termed the thermal
equilibrium layer.

Figure 9 shows the ratio of the thermal equilibrium layer thickness to the shock stand-off
distance, z/d, along the stagnation line for a radius R=1 mm, as a function of incoming flow
velocity or the Reynolds number.

It is noted that for large velocities (]5 km s−1), the shock layer is nearly completely in
thermal equilibrium, whereas for lower velocities, a significant portion of the layer is out of
thermal equilibrium. However, it is also noted that for velocities less than 2.5 km s−1, the flow
behind the shock is frozen at a composition equal to the ambient air composition. Hence, for
a five-species gas model for air (N2, O2, NO, N, O), the mass fractions of NO, N, O are much
less than 10−4. Since at such velocities, the equilibrium mass fractions of NO, N and O are
negligible, we can still characterize the flow field composition with only two properties (e.g.
pressure and enthalpy).

Several calculations were performed at sea level, and are reported in Figure 10. When the
maximum temperature behind the shock is larger than 6000 K, a nine-species model for air
including ionization is needed. When the maximum temperature is less than 6000 K, a
five-species air model suffices. From these calculations it is possible to define a zone in the
(R, 6�) plane for which the shock layer is fully in chemical and thermal equilibrium. Also, for
velocities less than 2.5 km s−1 at sea level (which corresponds to a maximum temperature
T=2500 K behind the shock), for the conditions at sea level the flow is considered frozen, as
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Figure 9. Thermal equilibrium layer distance over shock stand-off distance for R=1 mm, at sea level
conditions.

described above. The limit of this frozen shock layer zone is not absolute since it is clear from
the previous remarks that the calculations are dependent on the physical model.

In Figure 10, the line 6�=2.5 km s−1 intersects the boundary separating equilibrium and
non-equilibrium shock layers. At temperatures less than 2500 K, the equilibrium concentra-
tions of NO, N and O are negligible in front of the concentration of N2 and O2. The
approximation of frozen flow also considers that the concentrations of NO, N and O are
negligible. It is, therefore, possible to assume a frozen shock layer, even though this is not
strictly true theoretically.

Figure 10. Mapping of equilibrium, non-equilibrium and chemically frozen regions as a function of
altitude, incoming flow velocity and nose radius.
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Table I. Velocity gradient comparison.

(du/ds)s=0 (s−1) (r�/rshock)1/3=e1/3 e1/3/[(R/6�)(du/ds)s=0]6� (km s−1)

1.09×10−6 5.77×10−12.0 1.059
3.0 1.39×10−6 5.43×10−1 1.172

1.71×10−6 4.87×10−1 1.144.0
2.05×10−6 4.73×10−15.0 1.15

For a small radius, the shock layer is in thermal equilibrium at high velocities, whereas for
large radii, the shock layer is in thermal equilibrium for all velocities.

Note that no experimental data is available to validate the flow field properties and wall
gradients. However, Reinecke [26] fitted experimental results and calculations performed over
the past 30 years to obtain a formula for the velocity gradient at the stagnation point,

� r�

rshock

�1/3

=
R
6�

�du
ds
�

s=0

(34)

where s is the curvilinear co-ordinate along the sphere, R is the radius at the nose, and �
denotes incoming flow properties. The results obtained from these calculations are presented in
Table I. The calculations show agreement within 6–17 per cent.

7.2. Mapping as a function of altitude

The flow field around a hemispherically tipped body of radius R depends on the incoming flow
velocity, pressure and temperature for a perfect gas. For the range of incoming flow velocities
(6�� [2, 10 km s−1]) of interest in this test problem, the predominant chemical reactions behind
the shock are binary dissociation reactions; binary scaling may be used to characterize the flow
in the shock layer when the whole shock layer is in thermal equilibrium. Binary scaling does
not apply, however, for thermal non-equilibrium problems. More computations are therefore
necessary to establish a mapping in the (R, 6�, z) domain, showing regions in which the shock
layer properties may be characterized by only two physical properties. A series of computa-
tions with incoming flow conditions corresponding to altitudes of z=50 kft and z=100 kft
were performed; Table II gives the properties at the altitudes considered here.

The domains are presented in Figure 10. All three altitudes are overlapped on this figure,
showing the overlapped domains in the (R, 6�) plane. Three zones are distinguished. In the

Table II. Incoming flow properties.

p (atm) r (kg m−3)z (kft) T (K)

0.0 1.0 1.14 298.0
216.00.18220.115650.0

100.0 0.0118 0.0173 232.0
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zone denoted 1, the flow in the shock layer is chemically frozen, so a perfect gas code will be
sufficient to compute the flow properties.

The velocity threshold at which the maximum translational temperature behind the shock
reaches 2500 K increases weakly with altitude. It is shown as constant for the sake of clarity
on the figure. It is observed that at z=0 kft, the temperature behind the shock reaches 2500 K
for an incoming velocity of 2390 m s−1, while at z=50 kft and z=100 kft, the velocity
threshold is 2430 and 2470 m s−1 respectively. Changes in the physical model, or the use of an
adaptive mesh, may modify these numbers since the peak temperature behind the shock is
sensitive to the reaction rate coefficients, as well as the shock resolution.

The zone denoted 3 is defined above the curves dependent on the altitude. In this zone, the
shock layer is in chemical equilibrium. Between the chemical equilibrium case and the frozen
flow case is zone 2, for which the shock layer is neither frozen nor in chemical equilibrium. A
full non-equilibrium numerical code is needed to compute the properties of the flow in this
zone.

The mapping as a function of altitude also indicates that the zone of non-equilibrium in the
(R, 6�) plane increases with altitude. At a fixed radius and incoming velocity for a given
temperature behind the shock, the V–T relaxation time is inversely proportional to the
pressure, and hence increases with altitude. Thermal non-equilibrium is then stronger as the
altitude increases.

8. CONCLUDING REMARKS

In this part, a hybrid finite element/finite volume–P1 formulation is developed and imple-
mented to solve the two-dimensional axisymmetric Navier–Stokes equations for a multi-
species reacting gas out of thermal and chemical equilibrium. This work is an extension of the
approaches in References [12,27]. The scheme employs a semi-implicit treatment of the
convective and viscous fluxes to permit larger time steps when marching to the steady state
solution. However, in the solutions of the M=25 flow over a two-dimensional ellipse and flow
in the test section of a plasma torch, a CFL number of less than 20 had to be employed to
obtain a converged solution. Most of the calculations were performed using the first-order
approximate solver. However, this code is less reliable for boundary layer calculations with
high triangle aspect ratio. For these test problems a discrepancy of 10–15 per cent was
observed between the numerical results from this work and experimental or theoretical data,
with triangle aspect ratios greater than 500. Implementation of a second-order-accurate scheme
gives better results for perfect gas calculations [14]. Future work is needed to develop an
improved second-order scheme for non-equilibrium calculations. The Osher approximate
Riemann solver employed to treat the convective flux is computationally more expensive than
a Roe approximate solver. However, it does allow computation of highly non-linear flows,
such as the M=25 strong shock problem for the two-dimensional ellipse even on a relatively
coarse mesh. An adaptive refinement procedure would give better resolution of shocks and
flow details.
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